a $\mathrm{f}(x)=-\left[x^{2}-4 x\right]+3$
$=-\left[(x-2)^{2}-4\right]+3$

$$
=-(x-2)^{2}+7
$$

$\therefore a=-1, b=-2, c=7$
b $(2,7)$
c intersect when

$$
\begin{aligned}
& \begin{array}{l}
\text { intersect when } \\
3+4 x-x^{2}=3 \\
x(4-x)=0 \\
x=0,4 \\
\text { area below curve }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{4}\left(3+4 x-x^{2}\right) \mathrm{d} x \\
& =\left[3 x+2 x^{2}-\frac{1}{3} x^{3}\right]_{0}^{4} \\
& =\left(12+32-\frac{64}{3}\right)-0=\frac{68}{3}
\end{aligned}
$$

area below line

$$
=4 \times 3=12
$$

area between line and curve

$$
=\frac{68}{3}-12=10 \frac{2}{3}
$$

$2 \quad \mathbf{a}=\left[-4 x^{-2}\right]_{1}^{2}$

$$
=-1-(-4)
$$

$$
=3
$$

b $y=1 \Rightarrow x=2$
$y=8 \Rightarrow x=1$

shaded area

$$
\begin{aligned}
& =3-(1 \times 1)+(7 \times 1) \\
& =9
\end{aligned}
$$

$4 \quad \mathbf{a} \quad \frac{4-x^{2}}{x^{2}}=0$
$4-x^{2}=0$
$x^{2}=4$
$x>0 \therefore x=2, P(2,0)$
b $l: y-0=-3(x-2)$
$y=6-3 x$
intersect when $\frac{4-x^{2}}{x^{2}}=6-3 x$

$$
4-x^{2}=6 x^{2}-3 x^{3}
$$

$$
3 x^{3}-7 x^{2}+4=0
$$

$x=2$ is a solution $\therefore(x-2)$ is a factor
$(x-2)\left(3 x^{2}-x-2\right)=0$ $(x-2)(3 x+2)(x-1)=0$ $x=2($ at $P),-\frac{2}{3}, 1$
$x>0 \quad \therefore Q(1,3)$
c area below curve

$$
\begin{aligned}
& =\int_{1}^{2}\left(4 x^{-2}-1\right) \mathrm{d} x \\
& =\left[-4 x^{-1}-x\right]_{1}^{2} \\
& =(-2-2)-(-4-1)=1
\end{aligned}
$$

area below line

$$
=\frac{1}{2} \times 1 \times 3=\frac{3}{2}
$$

area between line and curve

$$
=\frac{3}{2}-1=\frac{1}{2}
$$

